Duration 5:53

Chemical and physical properties

353 watched
0
6
Published 2021/10/26

#physical_properties #chemical_properties All matter has physical and chemical properties. Physical properties are characteristics that scientists can measure without changing the composition of the sample under study, such as mass, color, and volume (the amount of space occupied by a sample). Chemical properties describe the characteristic ability of a substance to react to form new substances; they include its flammability and susceptibility to corrosion. All samples of a pure substance have the same chemical and physical properties. For example, pure copper is always a reddish-brown solid (a physical property) and always dissolves in dilute nitric acid to produce a blue solution and a brown gas (a chemical property). Physical Property A physical property is a characteristic of a substance that can be observed or measured without changing the identity of the substance. Silver is a shiny metal that conducts electricity very well. It can be molded into thin sheets, a property called malleability. Salt is dull and brittle and conducts electricity when it has been dissolved into water, which it does quite easily. Physical properties of matter include color, hardness, malleability, solubility, electrical conductivity, density, melting point, and boiling point. For the elements, color does not vary much from one element to the next. The vast majority of elements are colorless, silver, or gray. Some elements do have distinctive colors: sulfur and chlorine are yellow, copper is (of course) copper-colored, and elemental bromine is red. However, density can be a very useful parameter for identifying an element. Of the materials that exist as solids at room temperature, iodine has a very low density compared to zinc, chromium, and tin. Gold has a very high density, as does platinum. Pure water, for example, has a density of 0.998 g/cm3 at 25°C. The average densities of some common substances are in Table 3.5.1 . Notice that corn oil has a lower mass to volume ratio than water. This means that when added to water, corn oil will “float.” Table 3.5.1 : Densities of Common Substances Substance Density at 25°C (g/cm3) blood 1.035 body fat 0.918 whole milk 1.030 corn oil 0.922 mayonnaise 0.910 honey 1.420 Hardness helps determine how an element (especially a metal) might be used. Many elements are fairly soft (silver and gold, for example) while others (such as titanium, tungsten, and chromium) are much harder. Carbon is an interesting example of hardness. In graphite, (the "lead" found in pencils) the carbon is very soft, while the carbon in a diamond is roughly seven times as hard. Figure 3.5.1 : Pencil (left) and Diamond ring (right). Both are a form of carbon, but exhibit very different physical properties. Melting and boiling points are somewhat unique identifiers, especially of compounds. In addition to giving some idea as to the identity of the compound, important information can be obtained about the purity of the material. Chemical Properties Chemical properties of matter describe its potential to undergo some chemical change or reaction by virtue of its composition. The elements, electrons, and bonds that are present give the matter potential for chemical change. It is quite difficult to define a chemical property without using the word "change". Eventually, after studying chemistry for some time, you should be able to look at the formula of a compound and state some chemical property. For example, hydrogen has the potential to ignite and explode given the right conditions—this is a chemical property. Metals in general have the chemical property of reacting with an acid. Zinc reacts with hydrochloric acid to produce hydrogen gas—this is a chemical property.

Category

Show more

Comments - 0